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Abstract—Mr.HANDI is a robot that follows a person 

around whenever he makes the corresponding hand gesture to 

do so. Mr.HANDI uses  the Rovio robot system as its hardware 

side, and ROS as the software side. Our goal is to make the 

Rovio recognize two separate hand gestures: follow and stop. 

When the follow hand gesture is given, the Rovio will continue 

to track the human who gave the gesture and adjust its heading 

to keep them at the center of its vision. On recognition of the 

stop gesture, the Rovio will cease forward movement. The robot 

was capable of detecting a human and moving toward it. 

I. INTRODUCTION 

HE interface between technology and its users is 

becoming increasingly complex as the technology 

becomes more advanced. A user interface that allows a 

person to use a robot with little or no technical training could 

be useful in many situations. Hand gestures are very easily 

taught to users, even when there is a language barrier. 

Commands given through such gestures could be quickly 

and easily taught to virtually anyone, opening up the 

accessibility of the system and making it easier to integrate 

into an environment. 

 The ability to interact autonomously with humans is 

another valuable trait for technology. Detecting or tracking a 

human allows a robot system to be aware of users in its 

space and, depending on the system‟s purpose, increase 

safety and/or function.  

 Our aim was to combine these two traits into a robot 

system capable of being commanded through hand gestures 

to track and follow a human in its visual range. The Rovio, 

the robot on which the system was built, has one camera 

available for visual sensing. Using this camera, we captured 

a feed of pictures and used them for the hand identification 

and human tracking functions. The results of these functions 

determined the direction and type of movement for the 

Rovio. 

II. HAND IDENTIFICATION 

The filtering process for hand images involves several 

steps. First, a Gaussian filter is applied to the image to help 

remove any noise. Then, a canny edge detection filter is used 

to find the edges in the image. A dilation filter is used to 

help fix any “breaks” in edges. The idea behind this is that 

due to noise and other errors, edges that are connected in the 

original image may not be after the canny filter is applied; 
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the dilation filter is used to address this problem. Finally, we 

use openCV's function cgFindContours to obtain the most 

relevant edges from the data. The most difficult aspect of 

this part of our project was the selection of parameters for 

the various filters. We tried several different threshold 

values for the canny edge detection, as well as different 

kernel sizes for both the Gaussian and Canney filters. We 

also attempted to use other filters as well, such as a median 

filter and openCV's erode filter. Ultimately, the method we 

used was a good tradeoff between accuracy and 

computational complexity. 

Our intention for hand classification was to use the 

filtered images' hu invariants for SVM training and 

classification. Hu invariants are calculated using the 

moments of an image, and thus do not change if an image is 

transformed in some way, such as a size or rotational 

transformation. Our hope was that this would allow our 

classifier to recognize a given hand signal regardless of it's 

position or rotation within the image. Our SVM used a 

polynomial kernel, and we had separate code for performing 

cross-validation on the SVM.  

III. HUMAN TRACKING 

The human tracking algorithm went through two 

iterations. The first iteration attempted to find a human face 

in the source image, and then use the Lucus-Kanad Method 

to predict movement through optical flow. This original 

version was very fast at tracking once the human was 

detected and very robust when tested on a webcam attached 

to a computer. However, when tried on Rovio which 

involves longer image receiving time, the algorithm could 

track the person of the interest anymore because the images 

received from Rovio had so much big time difference 

between images that the prediction of the optical flow in 

order to track the human was not accurate anymore. In 

addition, the amount of computation/the length of the 

algorithm slowed down the human detecting/tracking in a 

great time length. 
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In the second version of the human detecting/tracking 

algorithm, a focus was on calculation speed and 

compatibility with the Rovio‟s relatively slow stream of 

images. A second classifier haar-trained to detect upper body 

detection was added to compensate for this loss of 

robustness.  After the addition of this other classifier, Rovio 

could detect face/human better even in the setting where the 

human‟s face is half or not visible in Rovio‟s monocular eye.  

Detect face
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set found flag to true

Face found Face not found

Set found flag 

to false

Upper body found Upper body not found

 

Fig 2. Program structure for improved human detection 

 In addition, the major reason of using haar training and 

cascade classifier is that they are quick in performance and 

compact in size of the trained classifier even when the actual 

train data size could be over 5000.  In fact, the face detection 

trained data is based on about 5000 data images.  In order to 

run the classifier, it takes only about a few lines of code and 

the time less than one or two seconds.  Moreover, when 

training, haar training function has the way to generate 

unlimited number of more training data images from a 

limited amount of existing training data without having had 

to manual go and fetch more training data images.  

 The second revision of the human detection algorithm 

assumed two conditions: a target is visible in the Rovio‟s 

visual range, and a target is visually the largest object in the 

image received from Rovio. Some of experiments such as 

trial numbers 2 and 14 in the Fig. 4 on the next page were in 

fact tested on the conditions that did not necessarily satisfied 

the above conditions resulting in lower performance of 

accurately detecting the human target.   However, other 

experiments such as trial number 14 were done under the 

circumstance that fulfills the aforementioned conditions thus 

resulting is much better accurate performance.  In 

conclusion, when the two condition requirements are met, 

the algorithm can perform even better than 82.4% of 

accuracy thus having the two conditions satisfied is strongly 

recommended for using the algorithm on Rovio. 

IV. CONTROL 

The control of the robot is handled through ROS and 

issuing HTML requests to the Rovio. The HTML requests 

are handled by a module provided by the CS4758 staff, 

called Interface. The controller written specifically for 

Mr.HANDI subscribed to the image message publisher in 

the interface module, and published a geometry twist 

message to the interface to issue movement commands to the 

Rovio. The image message was converted to an openCV 

format and passed to the hand classifier and human trackers. 

Each function returned values to indicate the next command 

state of the robot, whether a human was detected, and the 

estimated position of the human. 

 Using these values, the controller calculated the next 

command that should be issued to the Rovio, and set the 

current state as the next state predicted by the hand 

classifier. The human's estimated position was then 

compared to threshold values signifying the human was to 

the Rovio's left, in front of the Rovio, or to the Rovio's right. 

The instructions to be issued to the Rovio were then 

dependent on which command state the hand classifier 

predicted the Rovio should be in during the current iteration. 

 In the "go" state, if the human was determined to be in the 

left portion of the image, the Rovio was issued the command 

to travel left and forward, with the intention of bring the 

Rovio both closer to the human and center the human in the 

Rovio's vision. If the human was found to be in the center, 

the Rovio was issued a command to move forward. Finally, 

a human found in the right section of vision cause a 

command to move forward and right to be issued. 
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Fig 3. Program structure for controller 

 Two options were considered for the case when in the 

"go" command state, no human was detected: turn in a 

random direction for a full circle until a human was acquired 

again, or remain in place until a human was acquired.  The 

first option would have provided a chance to seek out a 

human that was previously not in vision range. However, if 

the human tracking function merely lost lock on the human 

for a few images, then the Rovio could be turning away from 



  

the human it is suppose to be tracking. The „remain still‟ 

option represented less utility, but offered better stability in 

the case when the human tracker was incorrect. The „remain 

still‟ option was chosen for this reason. 

In the "stop" state, the Rovio made the same 

determination as the "go" state for the position of the human, 

but instead of issuing forward commands, the Rovio was 

issued commands to rotate in place to keep the human 

centered. This kept the vision focus on the human in case a 

hand gesture command was given from the human being 

tracked. 

V. RESULTS 

A. Hand Identification 

The various image filtering methods seemed to work well, 

as did the method of breaking down the image into key 

components using image segmentation. We were able to 

consistently produce data that was simpler than the original 

image, while clearly maintaining the shape of the hand. 

 The SVM was much more difficult to implement; we 

began by working with openCV's SVM implementation, but 

stopped when we learned that this code was new and 

probably not reliable. We then switched to using the libsvm 

implementation of support vector machines. This was more 

effective than openCV in that the code actually worked; 

unfortunately, we were still unable to achieve statistically 

meaningful results with our SVM. This could have been due 

to a number of reasons.  the size of our training set may not 

have been large enough. It  could also be that hu invariants 

are not the best indicator of hand shape. Although the SVM's 

parameters (such as the selection of a kernel)  may have also 

played a role in the issues we had, it seems unlikely given 

the SVM's performance. 

B. Human Tracking 

For the trial numbers 2, 7, and 12, the rovio moved to a 

completely wrong direction both because the rovio slipped 

bit by bit to a wrong direction due to the limitation of the 

control command we can make with the current version of 

the rovio and because rovio started to detect something else 

bigger after losing the person from its vision.  Other than 

those three times, Rovio rarely missed the human and when 

it did miss him/her it redetected the person only one or two 

frames of images later. In these trials, the Rovio correctly 

identified the target human 82% of the time. 
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Fig 4. Accuracy of human detection 

 

C. Control 

The controller was able to direct the Rovio toward a 

detected human fairly reliably. If a human position was 

passed to the controller, the controller would move the 

Rovio toward it. We ran into some issues with overshooting 

when moving toward a human. Figure 5 shows the 

difference between the tracked human‟s position and the 

center of the Rovio‟s vision. This value tended to oscillate as 

the Rovio moved toward the human because of 

overcorrection. We attempted to correct for this with a wider 

forward section to reduce oscillations, but several constraints 

with our control over the Rovio interfered. The update rate 

of the Rovio was about an image a second, with images 

sometimes arriving fairly close together, and other times on 

the order of seconds apart. This made predicting how far the 

Rovio would go with one command difficult. The controller 

was changed to stop Rovio movement when no image was 

received to help reduce these oscillations. A video of the 

final result of the combined controller and human tracking 

algorithm was submitted to the course staff of CS4758. 

Altering the speed of the Rovio was also not an option, our 

control over movement was either moving or halted in the 

specified direction. If speed was available as an option, a 

PID controller may have helped increase accuracy of 



  

keeping a human centered in the Rovio's vision. 
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Fig 5. Dist. of human fron center of vision 

VI. CONCLUSIONS 

For this project, we aimed to create a robot system 

capable of recognizing hand gestures as a control input, and 

humans as goals to move towards. Both algorithms were 

first tested in a separate environment for performance, then 

integrated into ROS and Rovio. The human tracking 

algorithm proved reliable in the separate environment, but 

when first integrated into ROS/Rovio ran into issues with the 

slower update rate. A modified algorithm addressed these 

issues and provided more accurate detection. Control over 

the Rovio was successful, but limited by the available 

commands that could be passed to the Rovio, and by the 

Rovio‟s method of movement. 
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