

\

Abstract—Mr.HANDI is a robot that follows a person

around whenever he makes the corresponding hand gesture to

do so. Mr.HANDI uses the Rovio robot system as its hardware

side, and ROS as the software side. Our goal is to make the

Rovio recognize two separate hand gestures: follow and stop.

When the follow hand gesture is given, the Rovio will continue

to track the human who gave the gesture and adjust its heading

to keep them at the center of its vision. On recognition of the

stop gesture, the Rovio will cease forward movement. The robot

was capable of detecting a human and moving toward it.

I. INTRODUCTION

HE interface between technology and its users is

becoming increasingly complex as the technology

becomes more advanced. A user interface that allows a

person to use a robot with little or no technical training could

be useful in many situations. Hand gestures are very easily

taught to users, even when there is a language barrier.

Commands given through such gestures could be quickly

and easily taught to virtually anyone, opening up the

accessibility of the system and making it easier to integrate

into an environment.

 The ability to interact autonomously with humans is

another valuable trait for technology. Detecting or tracking a

human allows a robot system to be aware of users in its

space and, depending on the system‟s purpose, increase

safety and/or function.

 Our aim was to combine these two traits into a robot

system capable of being commanded through hand gestures

to track and follow a human in its visual range. The Rovio,

the robot on which the system was built, has one camera

available for visual sensing. Using this camera, we captured

a feed of pictures and used them for the hand identification

and human tracking functions. The results of these functions

determined the direction and type of movement for the

Rovio.

II. HAND IDENTIFICATION

The filtering process for hand images involves several

steps. First, a Gaussian filter is applied to the image to help

remove any noise. Then, a canny edge detection filter is used

to find the edges in the image. A dilation filter is used to

help fix any “breaks” in edges. The idea behind this is that

due to noise and other errors, edges that are connected in the

original image may not be after the canny filter is applied;

 Chris McNally is with the School of Electrical and Computer

Engineering, Cornell University, Ithaca, NY 14850. (csm44@cornell.edu)

Hee Jung Ryu and Kenon Fachon are with the Department of Computer

Science, Cornell University, Ithaca, NY 14850. ({hr99,kjf43}@cornell.edu)

the dilation filter is used to address this problem. Finally, we

use openCV's function cgFindContours to obtain the most

relevant edges from the data. The most difficult aspect of

this part of our project was the selection of parameters for

the various filters. We tried several different threshold

values for the canny edge detection, as well as different

kernel sizes for both the Gaussian and Canney filters. We

also attempted to use other filters as well, such as a median

filter and openCV's erode filter. Ultimately, the method we

used was a good tradeoff between accuracy and

computational complexity.

Our intention for hand classification was to use the

filtered images' hu invariants for SVM training and

classification. Hu invariants are calculated using the

moments of an image, and thus do not change if an image is

transformed in some way, such as a size or rotational

transformation. Our hope was that this would allow our

classifier to recognize a given hand signal regardless of it's

position or rotation within the image. Our SVM used a

polynomial kernel, and we had separate code for performing

cross-validation on the SVM.

III. HUMAN TRACKING

The human tracking algorithm went through two

iterations. The first iteration attempted to find a human face

in the source image, and then use the Lucus-Kanad Method

to predict movement through optical flow. This original

version was very fast at tracking once the human was

detected and very robust when tested on a webcam attached

to a computer. However, when tried on Rovio which

involves longer image receiving time, the algorithm could

track the person of the interest anymore because the images

received from Rovio had so much big time difference

between images that the prediction of the optical flow in

order to track the human was not accurate anymore. In

addition, the amount of computation/the length of the

algorithm slowed down the human detecting/tracking in a

great time length.

Mr.HANDI - Human and digit identificaiton

Kenon Fachon(kjf43) Chris McNally(csm44) Hee Jung Ryu(hr99)

T

(a) (b)

Fig 1. Filtered hand gestures for (a) go and (b) stop

In the second version of the human detecting/tracking

algorithm, a focus was on calculation speed and

compatibility with the Rovio‟s relatively slow stream of

images. A second classifier haar-trained to detect upper body

detection was added to compensate for this loss of

robustness. After the addition of this other classifier, Rovio

could detect face/human better even in the setting where the

human‟s face is half or not visible in Rovio‟s monocular eye.

Detect face

Detect

upper

boddy

Return estimated

position to controller,

set found flag to true

Face found Face not found

Set found flag

to false

Upper body found Upper body not found

Fig 2. Program structure for improved human detection

 In addition, the major reason of using haar training and

cascade classifier is that they are quick in performance and

compact in size of the trained classifier even when the actual

train data size could be over 5000. In fact, the face detection

trained data is based on about 5000 data images. In order to

run the classifier, it takes only about a few lines of code and

the time less than one or two seconds. Moreover, when

training, haar training function has the way to generate

unlimited number of more training data images from a

limited amount of existing training data without having had

to manual go and fetch more training data images.

 The second revision of the human detection algorithm

assumed two conditions: a target is visible in the Rovio‟s

visual range, and a target is visually the largest object in the

image received from Rovio. Some of experiments such as

trial numbers 2 and 14 in the Fig. 4 on the next page were in

fact tested on the conditions that did not necessarily satisfied

the above conditions resulting in lower performance of

accurately detecting the human target. However, other

experiments such as trial number 14 were done under the

circumstance that fulfills the aforementioned conditions thus

resulting is much better accurate performance. In

conclusion, when the two condition requirements are met,

the algorithm can perform even better than 82.4% of

accuracy thus having the two conditions satisfied is strongly

recommended for using the algorithm on Rovio.

IV. CONTROL

The control of the robot is handled through ROS and

issuing HTML requests to the Rovio. The HTML requests

are handled by a module provided by the CS4758 staff,

called Interface. The controller written specifically for

Mr.HANDI subscribed to the image message publisher in

the interface module, and published a geometry twist

message to the interface to issue movement commands to the

Rovio. The image message was converted to an openCV

format and passed to the hand classifier and human trackers.

Each function returned values to indicate the next command

state of the robot, whether a human was detected, and the

estimated position of the human.

 Using these values, the controller calculated the next

command that should be issued to the Rovio, and set the

current state as the next state predicted by the hand

classifier. The human's estimated position was then

compared to threshold values signifying the human was to

the Rovio's left, in front of the Rovio, or to the Rovio's right.

The instructions to be issued to the Rovio were then

dependent on which command state the hand classifier

predicted the Rovio should be in during the current iteration.

 In the "go" state, if the human was determined to be in the

left portion of the image, the Rovio was issued the command

to travel left and forward, with the intention of bring the

Rovio both closer to the human and center the human in the

Rovio's vision. If the human was found to be in the center,

the Rovio was issued a command to move forward. Finally,

a human found in the right section of vision cause a

command to move forward and right to be issued.

Convert to

openCV format

Image message

from Interface

Hand

classifier
Human

detection

‘Go’ or ‘stop’

state?

New command state Human detected flag
Human estimated position

Human

detected?

Human

detected?

Go Stop

No

movement
No

movement

Move

toward

human

Rotate

toward

human

NoYesNo Yes

Publish

command
Publish command as

twist message to

Interface
Fig 3. Program structure for controller

 Two options were considered for the case when in the

"go" command state, no human was detected: turn in a

random direction for a full circle until a human was acquired

again, or remain in place until a human was acquired. The

first option would have provided a chance to seek out a

human that was previously not in vision range. However, if

the human tracking function merely lost lock on the human

for a few images, then the Rovio could be turning away from

the human it is suppose to be tracking. The „remain still‟

option represented less utility, but offered better stability in

the case when the human tracker was incorrect. The „remain

still‟ option was chosen for this reason.

In the "stop" state, the Rovio made the same

determination as the "go" state for the position of the human,

but instead of issuing forward commands, the Rovio was

issued commands to rotate in place to keep the human

centered. This kept the vision focus on the human in case a

hand gesture command was given from the human being

tracked.

V. RESULTS

A. Hand Identification

The various image filtering methods seemed to work well,

as did the method of breaking down the image into key

components using image segmentation. We were able to

consistently produce data that was simpler than the original

image, while clearly maintaining the shape of the hand.

 The SVM was much more difficult to implement; we

began by working with openCV's SVM implementation, but

stopped when we learned that this code was new and

probably not reliable. We then switched to using the libsvm

implementation of support vector machines. This was more

effective than openCV in that the code actually worked;

unfortunately, we were still unable to achieve statistically

meaningful results with our SVM. This could have been due

to a number of reasons. the size of our training set may not

have been large enough. It could also be that hu invariants

are not the best indicator of hand shape. Although the SVM's

parameters (such as the selection of a kernel) may have also

played a role in the issues we had, it seems unlikely given

the SVM's performance.

B. Human Tracking

For the trial numbers 2, 7, and 12, the rovio moved to a

completely wrong direction both because the rovio slipped

bit by bit to a wrong direction due to the limitation of the

control command we can make with the current version of

the rovio and because rovio started to detect something else

bigger after losing the person from its vision. Other than

those three times, Rovio rarely missed the human and when

it did miss him/her it redetected the person only one or two

frames of images later. In these trials, the Rovio correctly

identified the target human 82% of the time.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

20

40

60

80

100

120

Trial Number

N
u
m

b
e
r

o
f

F
ra

m
e
s

Robustness of the Human Detecting Algorithm on Rovio

Total Number of Frames(overlayed by the blue bar)

Number of Times Human is Correctly Detected

Fig 4. Accuracy of human detection

C. Control

The controller was able to direct the Rovio toward a

detected human fairly reliably. If a human position was

passed to the controller, the controller would move the

Rovio toward it. We ran into some issues with overshooting

when moving toward a human. Figure 5 shows the

difference between the tracked human‟s position and the

center of the Rovio‟s vision. This value tended to oscillate as

the Rovio moved toward the human because of

overcorrection. We attempted to correct for this with a wider

forward section to reduce oscillations, but several constraints

with our control over the Rovio interfered. The update rate

of the Rovio was about an image a second, with images

sometimes arriving fairly close together, and other times on

the order of seconds apart. This made predicting how far the

Rovio would go with one command difficult. The controller

was changed to stop Rovio movement when no image was

received to help reduce these oscillations. A video of the

final result of the combined controller and human tracking

algorithm was submitted to the course staff of CS4758.

Altering the speed of the Rovio was also not an option, our

control over movement was either moving or halted in the

specified direction. If speed was available as an option, a

PID controller may have helped increase accuracy of

keeping a human centered in the Rovio's vision.

0 20 40 60 80 100 120 140
-200

-150

-100

-50

0

50

100

150
Mr.HANDI's Relative Location to the Human Object's Position(0)

TimeFrame

X
 P

o
s
it
io

n
 o

f
M

r.
H

A
N

D
I

in
 r

e
la

ti
o
n
 t

o
 t

h
e
 H

u
m

a
n
 O

b
je

c
t'
s
 X

 P
o
s
it
io

n

Fig 5. Dist. of human fron center of vision

VI. CONCLUSIONS

For this project, we aimed to create a robot system

capable of recognizing hand gestures as a control input, and

humans as goals to move towards. Both algorithms were

first tested in a separate environment for performance, then

integrated into ROS and Rovio. The human tracking

algorithm proved reliable in the separate environment, but

when first integrated into ROS/Rovio ran into issues with the

slower update rate. A modified algorithm addressed these

issues and provided more accurate detection. Control over

the Rovio was successful, but limited by the available

commands that could be passed to the Rovio, and by the

Rovio‟s method of movement.

REFERENCE

[1] P. Viola, M. Jones. Rapid Object Detection using a

Boosted Cascade of Simple Features. 2001.

[2] Zhichao Chen, Stanley T. Birchfield. Person Following

with a Mobile Robot Using Binocular Feature-Based

Tracking. Submitted to IEEE/RSJ Internationl

Conference 2007.

[3] Rainer Lienhart and Jochen Maydt. An Extended Set of

Haar-like Features for Rapid Object Detection.

Submitted to ICIP 2002.

